Ada Byron Lovelace – “Enchantress of Numbers”

Ada Lovelace by Alfred Edward Chalon (source)
Ada Lovelace by Alfred Edward Chalon (source)

Often women in the 18th and 19th centuries overcame significant odds to study mathematics or science, but as with every rule there is the exception. Ada Byron Lovelace is one of those exceptions. In Ada’s case, not only did she have a parent who approved of her interest, but one who pushed her to develop that interest; and it wasn’t her father who pushed her, but her mother.

Augusta Ada Byron, born December 10, 1815, was the daughter of Annabella Milbanke and the poet Lord Byron. The marriage was short-lived and Ada never got to know her father. Only a few weeks after her birth, Lord Byron left England and went to the continent, her mother made the separation official and took custody of Ada, something that was unusual for the time. Annabella was well-educated with a particular interest in mathematics and was determined that her daughter would be as well. (Lord Byron referred to Annabella as “princess of parallelograms” and later as the “Mathematical Medea,” which may give us a feel for her expertise in math, but also their relationship.) She researched the best education techniques and obtained the best tutors for Ada. Because they were of the aristocracy (in 1856, Annabella became Baroness Wentworth in her own right,) Ada also had access to some of the best intellectual minds of the time; including Mary Somerville, Augustus De Morgan., Michael Faraday, Charles Dickens, William Frend, Charles Wheatstone, and Woronzow Greig.

Annabella was a domineering mother. Some say that she wanted to suppress any tendency that Ada might have toward the mental instability of her father, so she insisted on strict lessons focused on rational pursuits and the avoidance of any romantic subjects such as poetry. (One anecdote says that Annabella fired a tutor for giving her daughter too much geography and not enough math.) Although Ada’s mother may have pushed her, Ada did have the talent for mathematics. Even though she was often ill as a child, suffering from blinding headaches and a period of paralysis, she worked hard to achieve the goals her mother set for her. De Morgan once wrote to Annabella that Ada had the capacity to become “an original mathematical investigator, perhaps of first-rate eminence.” Of course, he proceeded this by saying “if she were a man entering university.”

In 1833, Ada entered London society and was introduced at court to King William IV and Queen Adelaide. During one of the many social events they attended during the year, Ada and her mother were introduced to Charles Babbage, a noted mathematician and inventor of the Difference Machine. During that time astronomical tables were created by giving the calculations to two people (often women) and then comparing the results for discrepancies. Once when going over some of these calculations with Sir William Herschel, the astronomer, and finding many mistakes, he declared that he wished the calculations could be done “by steam,” meaning by machine. Babbage went on to design such a machine which he called the Difference Machine, so when Ada and her mother met him they were both very interested in learning more about it. They arranged to go see a prototype that Babbage had built and Ada asked to see the blueprints. For whatever reason, Babbage agreed to show this teenaged girl and her mother his plans, and a life-long friendship and collaboration was born.

Ada Lovelace by Margaret Sarah Carpenter (source)
Ada Lovelace by Margaret Sarah Carpenter (source)

As much as she enjoyed it, mathematics didn’t interfere with Ada’s social life and in 1835 she married William King who would become the Earl of Lovelace in 1838. They had several large homes, lived well, some might say too well, and had three children: Byron (1836), Anne Isabella (1837), and Ralph Gordon (1839). Ada doesn’t seem to have had much to do with her children; in fact her mother seems to have had more to do with their upbringing than she did. Certainly after Ada became sick and died, her mother directed the education of the children. King was supportive of Ada’s continued work in mathematics and from the time she met Babbage in 1833 until around 1842, she continued studying mathematics and corresponding with the best mathematicians of the day, including Babbage.

Analyzing the personality of a historical person is difficult and a number of different things have been said of Ada; that she was a hard drinking gambler; she inherited her father’s mental instability; and that she led a rather boring life, except of course for the rather long horseback rides with a man from a neighboring estate! What does seem clear from her letters is that she had fluctuating moods and that she did go to the horse races. However, over the course of William’s life he sold off many of his estates and by the end of his life was borrowing money. Considering he lived much longer than Ada, it seems likely that he was the primary source of the gambling debt, although Ada may have contributed to it. I’m not sure about the drinking, but Ada died of what is believed to have been uterine cancer, so for the last several years of her life she surely would have been prescribed laudanum (an opiate) for pain.

Babbage meanwhile, received financial support for building his Difference Machine, but had instead designed a more complex machine, the Analytical Engine. Where the Difference Machine could only perform basic addition and subtraction, the Analytical Engine could perform many more calculations, basically the equivalent of a modern day calculator. It is the earliest design of its kind that we are aware of and quite remarkable for its time. In 1842, Babbage was persuaded to give a lecture on the Analytical Engine at the University of Turin. One of the attendees, Luigi Menabrea, an engineer and the future prime minister of Italy, wrote a paper on the Engine and published it in a Swiss Journal, in French of course.

After Menabrea’s paper was published, Babbage asked Ada to translate it into English. At Babbage’s suggestion, Ada added notes to the paper explaining the concepts in more detail and adding information. The resulting paper was three times as long as the original and was well received. Included in the notes is an algorithm, a sequence of steps, which would allow the engine to calculate Bernoulli numbers, a series of numbers used in various branches of mathematics. Today we would call this a computer program, which is why Ada is often called the world’s first computer programmer. There is some controversy surrounding this, however. Many people believe that Ada was not the originator of the algorithm; that Babbage, in fact, wrote all the mathematics contained within the paper. She and Babbage were close friends and corresponded on a regular basis often multiple times during the day, so it is sometimes difficult to determine. He seems to have thought highly of her and referred to her as an “enchantress of numbers.”

Ada did contribute something that is significant and was acknowledged by Babbage to be her idea. She envisioned the machine being used to produce music. She was familiar with the Jacquard loom, which used punch cards similar to the Analytical Engine to produce complex patterns in weaving. Ada reasoned that if numbers could represent other things such as frequencies, that the engine could be programmed to produce frequencies in a particular way and produce music. This idea of using numbers to represent other things or as symbols was ahead of her time and prophetic of our present day computers.

Unfortunately, the paper on the Analytical Engine would be Ada’s crowning achievement. She died on November 27, 1852 at the age of 36 from what seems to have been a type of uterine cancer. Her mother came to take charge preventing any of her friends from seeing her in the last months of her life, including Charles Babbage. At her request, she was buried beside her father. Many mathematicians do their best work at an early age, but Mary Somerville, one of Ada’s mentors, began doing her best work in her 40s, so who knows what Ada might have achieved had she lived.

Learn about other Famous Women in Mathematics and Science.

Resources
Notable Women in Mathematics edited by Charlene Morrow and Teri Perl
Women in Science: Antiquity through the Nineteenth Century by Marilyn Bailey Ogilivie
Pictures of Babbage’s Difference Machine at the Computer History Museum in CA and a short NPR piece.

BBC show “In Our Time” – Melvyn Bragg with Patricia Fara, Senior Tutor at Clare College, Cambridge; Doron Swade, Visiting Professor in the History of Computing at Portsmouth University; John Fuegi, Visiting Professor in Biography at Kingston University.

Dame is a Four Letter Word – an audio recording about the life of Ada Lovelace

Sketch of the Analytical Engine invented by Charles Babbage by L. F. Menabrea – this is the translation of Menebrea’s paper with Ada’s notes.