The Tragic Life of Clara Immerwahr

Clara Immerwahr
Clara Immerwahr (source)

Clara Immerwahr was brilliant . . . with bad taste in men. But Clara’s bad choice translated into a very tragic story.

Clara was the youngest of four children in a comfortable, cultured family. They spent most of the year on the family farm and winters in Breslau with Clara’s grandmother. She and her sisters were tutored privately and attended a girls’ school located in her grandmother’s home.

Although her sisters wanted to marry, Clara bristled at the mention of the “prospective sphere of women’s occupations.” She was interested in natural science and had a desire to be financially independent. When her mother died in 1890, her father turned operation of the farm over to Clara’s sister Elli and her husband and moved with Clara to Breslau. There she attended a teacher’s seminary where the principal recognized her abilities and gave her a copy of Conversations on Chemistry by Jane Marcet. 

After completing her teacher training, Clara worked as a governess, but she still had a desire for more training in science, specifically chemistry. Her father’s university degree was in chemistry and he was delighted to support and help her.

By 1896, women were allowed to attend university lectures at Breslau as visitors, but Clara continued to fight for permission to take the qualifying exam for admittance into the doctoral program. In 1898, she became the first woman to pass the exam. Then on December 12, 1900, she achieved another first when she graduated magna cum laude with a Ph.D. in chemistry, becoming the first woman to receive this degree from a German university.

In spite of her achievement, it was still a boys club. Clara was able to work as an assistant to Richard Abegg, her doctoral advisor, do some research and give lectures to women’s organizations and schools, but she was limited because of her gender.

Around this time, Clara became reacquainted with Fritz Haber. Fritz had proposed to her several years before, but she had turned him down. At the time she was focused on her own studies. When they met again in the spring of 1901, the flame was rekindled and they married in August of that year.

Haber had developed quite a reputation. He was respected for his work in chemistry and had developed a method to convert nitrogen in the atmosphere into compounds that could be used in fertilizer. This method revolutionized agriculture and he was awarded the Nobel Prize for Chemistry in 1918.

Fritz Haber in 1919
Fritz Haber in 1919 (source)

Fritz was a professor at the Technological University in Karlsruhe. He was ambitious and frequently brought home guests unannounced. Clara thought at first that she would be able to continue her research, but the demands of homemaking and soon motherhood proved too much. However, she did collaborate with Fritz on his work and on a textbook about thermodynamics. He dedicated the book to Clara with thanks for “quiet collaboration.”

In spite of this, he had little respect for Clara’s work. As a workaholic, he also had little time for Clara and their son, Hermann. He traveled frequently and had affairs with other women.

Fritz Haber’s star continued to rise and in 1911, he was appointed head of the Kaiser Wilhelm Institute in Berlin. This honor came with a position as professor at the University of Berlin and membership in the Prussian Academy of Science. In spite of these honors, he may have felt some pressure to prove his patriotism.

Both Fritz and Clara were Jewish and had converted to Christianity in 1893 and 1897, respectively. Antisemitism was prevalent, including a ban preventing Jews from being officers in the army, and even very talented people of Jewish birth came under suspicion.

When the war broke out in 1914, Fritz volunteered his services and soon came up with a horrifying idea. He concentrated his work on poison gas and suggested that chlorine gas could be released to drift over the enemy’s position, disabling them without bombardment.

Clara was appalled and on more than one occasion begged him to stop his research on chemical warfare. She opposed him openly and he accused her in public of treasonous statements. When Clara received her Ph.D., she took an oath to “never in speech or writing to teach anything that is contrary to my beliefs. To pursue truth and to advance the dignity of science to the heights which it deserves.” She believed that Fritz had perverted the ideals of science.

There were also German commanders who thought the use of poisonous gas was “unchivalrous” or “repulsive,” but might be necessary if it meant victory. The first gas attack occurred on April 22, 1915 at Ypres in Belgium. After waiting for the winds to be just right, 168 tons of chlorine gas were released and drifted over the Allied troops, killing over half of them within minutes. A second attack was launched two days later.

Fritz was promoted to captain and returned to Berlin to a party in his honor on May 2, the day before he was to go to the Eastern front to oversee similar attacks. Early in the morning after the party, Clara took her husband’s revolver into the garden and shot herself. Her son heard the shot and she died in his arms. The next day Fritz went to the Russian front leaving 13-year old Hermann to deal with his mother’s suicide alone.

Since the 1970s, Clara’s life has received more attention. She is seen as an example of protest against the misuse of science. The most prestigious award given by the German section of the International Physicians for the Prevention of Nuclear War is called the Clara Immerwahr award; the University of Dortmund has a mentoring project for women named for her; and Clara is the subject of Tony Harrison’s play Square Rounds. It may have taken a little time, but she hasn’t been forgotten.

Resources
Jewish Women’s Archive: Clara Immerwahr
Smithsonian Magazine: Past Imperfect: Fritz Haber’s Experiments in Life and Death

Gertrude Belle Elion – Nobel Prize Winner in Medicine

Gertrude Belle Elion, unknown date, courtesy of the National Cancer Institute (source)
Gertrude Belle Elion, unknown date, courtesy of the National Cancer Institute (source)

“Acyclovir turned out to be different from any other compound Elion had ever seen. It is so similar to a compound needed by the herpes virus for reproduction that the virus is fooled. The virus enters normal cells and starts to make an enzyme that helps it reproduce. This enzyme activates Acyclovir and turns into something that is toxic to the virus. In short, Acyclovir makes the virus commit suicide.”

This is a quote from Sharon Bertsch McGrayne’s excellent book Nobel Prize Women in Science, which explains not only how one of the many compounds developed by Gertrude Belle Elion works, but also exemplifies her approach to research. She wanted to understand how the compounds were metabolized in the body and how they fought disease. Together with Dr. George Hitchings and a team of researchers at Burroughs Wellcome, she developed drugs that would change the lives of many people for the better, reducing suffering and extending lives.

Gertrude Belle Elion was born in New York City on January 23, 1918 to a Jewish immigrant family. Her father, Robert Elion, immigrated to the US from Lithuania when he was 12 and worked hard to graduate from New York University School of Dentistry in 1914. He was very successful, opening several dental offices, and investing in stocks and real estate. Her mother, Bertha Cohen, immigrated alone at the age of 14 to come live with older sisters who were already established. Bertha was 19 when she and Robert married, and although she never pursued higher education, she was a voracious reader who frequently read the books her children brought home from school. She came from an intellectual Russian Jewish family that valued education and knew how important it would be to her children’s futures.

When Gertrude, Trudy to the family, was six years old her brother Herbert was born. Shortly afterward, the family moved to the Bronx where they had a happy childhood. Before the move another person joined the family, her grandfather from Russia. His failing eyesight prevented him from continuing his profession as watchmaker, so after Herbert was born, he spent a great deal of time with Trudy forming a close bond. He was a Biblical scholar and spoke several languages; together they spoke Yiddish, and shared time in the park, the Bronx zoo, and music.

Trudy’s father was also a music lover, specifically the opera. He and Trudy often went to the Metropolitan Opera, a habit that Trudy would maintain for the rest of her life, flying to New York on weekends from North Carolina. Robert influenced her in another way. He was always planning imaginary trips using maps, train and bus schedules. After Trudy became successful, she began to travel, visiting many places in the world before her death in 1999.

Trudy was a successful student in high school, and when she graduated she entered Hunter College in 1933. She was a sponge for knowledge and enjoyed learning just about anything, but her decision to study science was made when she was 15 and watched her grandfather die painfully from stomach cancer. Trudy decided that no one should have to suffer as her grandfather had, so she wanted, if possible, to do something about it. Inspired as a girl by the life of Marie Curie and the book The Microbe Hunters by Paul DeKruif, she knew that she needed to study biology or chemistry, so she chose chemistry and graduated summa cum laude in 1937.

Robert Elion had lost most of his wealth in the crash of 1929, and although he still had his dental practice and loyal customers, there wasn’t much money for college. Hunter College, the women’s section of City College of New York, was free for those who could beat the fierce competition, but graduate school was a different story. Hunter was also an all-girl’s school, and Trudy had never really faced discrimination because of her gender. She placed many applications for fellowships and assistantships, but nothing came through. It was the Depression and there weren’t many jobs available, but there were none for women in fields that were dominated by men. In one eye-opening interview, she was told that she was qualified, but that they had never had a woman in the lab and they thought she would be a distraction!

Trudy’s mother had always encouraged her to have a career of some type, so she finally enrolled in secretarial school, but when she got the opportunity to teach biochemistry at the New York Hospital School of Nursing, she dropped out and took the job, even though it only lasted for 3 months. Finally, she met a chemist at a party and asked him if she could work in his lab as an assistant. He agreed, but couldn’t pay her anything to start. She was willing because it allowed her to continue learning and after a year and a half, she was making $20 a week and had saved enough living at home for one year of graduate school.

In the fall of 1939, Trudy entered New York University with money for one year’s tuition. She worked part-time as a receptionist and took education classes that allowed her to substitute teach in the public schools. In 1941, Trudy completed her Master’s Degree in Chemistry and began the task of looking for the perfect job. Her focus was always to look for jobs that would allow her to learn and get closer to her goal of working in medical research.

When WWII began, the demand for women increased in laboratories across the country. Trudy got a job in a laboratory doing quality control work for the A&P grocery chain. Always concerned with learning new things, when she felt she had learned as much as she could, she applied to an employment agency for research jobs. For about six months, she worked for a Johnson & Johnson lab until it was disbanded. Having gained the experience she needed, she then had a number of jobs to choose from, but was most intrigued by a job as an assistant to George Hitchings working for Burroughs Wellcome.

She found out about the job when her father asked her what she knew about the company after they sent some sample painkillers to his dental office. She decided to call and ask if they had a research lab and a job opening. She and Hitchings were a good match. He explained that he didn’t like the traditional trial and error method of drug research. He was also content to let her learn at her own pace and move from one area to another to satisfy her thirst for knowledge. While she had moved on from other jobs because she felt she had learned all she could, she never moved on from Burroughs Wellcome (now GlaxoSmithKline.) There was always something new to learn and she had the freedom to do it there. But more importantly, they began to make a difference in people’s lives.

Although Trudy started as Dr. Hitchings assistant, within two years she was publishing her own papers under his guidance and by the mid 1960s she had developed a reputation apart from Hitchings. This was in spite of not having a Ph.D. For two years, she worked on a Ph.D. at Brooklyn Polytechnic Institute until the dean told her that she would have to quit her job and work full time on her degree. She wasn’t willing to quit her job, so she quit school. It was an agonizing choice to make, but she knew that she had the potential to make a difference where she was, so she stayed.

Her faith in the job paid off. In 1950, Elion synthesized two cancer treatments for leukemia. Both of these drugs are still used today and when combined with other drugs result in close to an 80% cure rate. One of these drugs, referred to as 6-MP, was found to suppress the immune system in rabbits. Reading about the rabbits, a British surgeon tried 6-MP in dogs with kidney transplants and found that it extended their lives. He contacted Elion and asked if they had similar compounds that he could try which might be more effective. One of these, later marketed as Imuran, proved to be very effective in suppressing the immune system and since 1962 has been given to most of the kidney transplant patients in the US.

But what Elion called her “final jewel” was Acyclovir. Prior to its unveiling in 1978, there hadn’t been much research done on viruses. It was assumed that any compound toxic enough to kill a virus would also be extremely toxic to normal cells. Because Acyclovir was so selective to the herpes virus, it was very nontoxic to normal cells. Not only was it a break through in treating herpes, but it was a break through in virus research, opening the doors to many new possibilities including treatments for AIDS.

The intervening years had brought life changes for Trudy as well. In 1941, she had been planning to get married to a brilliant young statistician named Leonard. He fell ill with a strep infection, bacterial endocarditis, and died, just a few years before penicillin became available. Her mother also died of cervical cancer in 1956. Both of these losses served to intensify Trudy’s drive to continue in her research.

In 1970, the company moved its research facility to the Research Triangle Park in North Carolina. For a life long NYC resident this was quite a change. She adjusted well however, and it was here that she received the call in 1988 from a reporter telling her she had received the Nobel Prize together with Dr. Hitchings, and Sir James W. Black. She had already retired in 1983, but had remained in a consulting position. Winning the prize gave her a visibility that she had not had along with opportunities to contribute in many other ways.

In spite of the accolades that eventually came her way, what always meant the most to Trudy were the letters and handshakes she got from people who wanted to tell her how her discoveries had changed their lives. Although she never met anyone that could take Leonard’s place and never married, she loved her work, opera, traveling, and had loving relationships with her brother and his family. Gertrude Belle Elion lived a full and rewarding life and died in her sleep at her home in North Carolina on February 21, 1999, with a folder full of letters from people whose lives she had touched and whose lives she had helped save.

Resources
Nobel Prize Women in Science by Sharon Bertsch McGrayne
Academy of Achievement – A Museum of Living History
First Woman elected to the national inventor’s hall of fame 1991 (New York Times)

Read about other Famous Women in Math and Science

Gerty Radnitz Cori – Nobel Prize Winning Biochemist

Gerty Radnitz Cori
Gerty Radnitz Cori

In the late 19th century after universities began admitting women, there were still challenges to overcome. Most secondary schools for girls focused on social graces and being a good conversationalist but didn’t prepare them for entrance to the university. When Gerty Radnitz at 16 decided that she wanted to go to medical school, she was completely unprepared. She overcame this disadvantage to become the first woman to win a Nobel Prize in Physiology and Medicine and the first American woman to win a Nobel Prize.

Gerty Theresa Radnitz was born August 15, 1896, in Prague which was then part of the Austro-Hungarian Empire. Her family was Jewish and moderately well off. Her father, Otto Radnitz, was a chemist who invented a method for refining sugar and managed several beet sugar refineries. The oldest of three girls, Gerty was tutored at home until the age of ten when she went to finishing school. Recognizing her talent, her uncle who was a physician encouraged her to go to medical school. With the help of family and tutors, over the next two years she accumulated the equivalent of 5 – 6 years study in Latin, mathematics, physics, and chemistry in preparation to take her entrance exams. She passed and at 18 enrolled at the German branch of the Charles Ferdinand University at Prague.

During her first year of university, Gerty discovered two things that changed her life: biochemistry and Carl Cori. Carl was the son of Carl Cori, a physician, and Martha Lippich. His father went on to get a doctorate in zoology and do research at the Marine Biological Station in Trieste where he was the director. He often took the younger Carl with him on field expeditions to do research and gather specimens. Trieste, in what is now northern Italy, was a diverse area where Carl was exposed to people of different backgrounds and developed what he called “immunity to racial propaganda.” The fact that Gerty was Jewish and he was Catholic didn’t bother him at all, but it would play a role later in their lives.

For two years they studied together and enjoyed taking trips for hiking or skiing, until in 1916, Carl was drafted into the Austrian army. In 1918, assigned to a field hospital for infectious disease, he saw first hand the effect of disease on the troops, as well as the impact of the Influenza pandemic sweeping the world. The Cori family had a history of scholarship, with a number of professors on both sides of the family. This combined with his sense of helplessness in the face of disease contributed to his desire to do research. Once the war was over, Carl and Gerty were reunited and received their medical degrees in 1920. They also published their first joint paper, beginning a collaboration that would last for their entire careers.

After receiving their degrees, they traveled to Vienna where they were married, and Carl and Gerty were both able to obtain positions doing post-doctoral research. The post war years were difficult. Research was a low priority and supplies were hard to obtain. Carl was one of the few able to do research, because his father sent him a bag of frogs. Gerty worked in pediatrics doing research on thyroid and blood disorders. The conditions were poor, however. She worked only for meals which were not very nutritious, causing her to develop a vitamin A deficiency. The fact that Gerty was a woman and Jewish, even though she had converted to Catholicism when she married made finding a position very difficult. Carl became even more uneasy about the situation in Europe when he was required to prove his Aryan ancestry for a position at Graz. They began considering moving to the United States.

Photo from the Smithsonian Institution Archives via Wikimedia Commons

After working in different cities, Carl in Graz and Gerty in Vienna, any position would only be acceptable to Carl if he could obtain a position for Gerty as well. Carl and Gerty Cori were ideally suited as research partners. William Daughaday of Washington University School of Medicine said “Carl was the visionary. Gerty was the lab genius.” In personality, they were the reverse of Irene and Frederic Joliot-Curie. Carl was somewhat shy, relaxed, and a slower more contemplative thinker. Gerty was outgoing, vivacious, and a brilliant quick thinker. She was also more ambitious than Carl and more demanding in the lab.

Finally, in 1922, Carl obtained a position at the Institute for the Study of Malignant Disease (later renamed the Roswell Park Memorial Institute), in Buffalo, New York. Gerty was given a position as an assistant pathologist. Although they worked in different labs, they continued the practice of publishing papers together, even though Gerty was told more than once to stay out of Carl’s lab. Eventually, the benefit of allowing them to work together was acknowledged and the breach in protocol was overlooked. During their time in Buffalo from 1922 to 1931, Carl and Gerty established their reputations and became US citizens.

Gerty and Carl were primarily interested in studying insulin and the production of energy in the body. If you remember your high school biology, the Cori cycle explains how the body breaks down glycogen into glucose for use in muscles and converts lactic acid back into glycogen for storage in the liver. The discovery and explanation of this process in 1929 would be the basis for their Nobel Prize in 1947. This research, however, wasn’t a good fit for the work being done at the Institute, which was primarily focused on cancer research, so together the Cori’s began looking for other positions.

In spite of the fact that Gerty had published frequently, individually in addition to jointly with Carl, he began to receive job offers, not Gerty. Most of these offers, including those from Cornell and the University of Toronto, did not include a possibility for positions for her. At the University of Rochester, Carl was offered a position under the condition that he stop collaborating with his wife. Gerty was even taken aside and told that she was hindering his career because it was “un-American” for a husband and wife to work together. In fact it was very common for women to work in conjunction with their husbands during this time, although it was usually as low or unpaid “assistants” meaning that the wife rarely received recognition for her contribution. This was unacceptable to both Carl and Gerty.

Finally in 1931, they received job offers from the Washington University medical school in St. Louis. Even though Carl became the chairman of the pharmacology department, Gerty was only offered a position as a research associate at one-fifth the pay. Still they were able to collaborate and would remain at Washington University for the remainder of their careers doing groundbreaking research in glycogen utilization and with enzymes. During World War II, the demand for women scientists increased due to the reduced work force and Gerty finally became a full professor.

From left to right Dr. Carl F. Cori, Dr. Joseph Erlanger, Dr. Gerty T. Cori, and Chancellor Arthur H. Compton. Photo taken in 1947.
Copyright © Becker Medical Library, Washington University School of Medicine

Gerty and Carl were supportive of other scientists as well, hiring women and Jews when other universities and even other departments at Washington refused to do so. Eventually, the work done in their lab resulted in eight Nobel Prizes, including a joint prize for Carl and Gerty in Physiology and Medicine. Over time, Carl became more involved in writing, directing research of students, and administration, and running the lab became exclusively Gerty’s domain. As with many passionate people, she was not always liked or easy to work for. She demanded precision. The work and the results demanded it.

Both of the Coris impressed others with their depth of knowledge about a wide range of topics. For most of her time at Washington, Gerty had 5 – 7 books delivered weekly to her from a local lending library. Every Friday she would prepare her list for the next week. She loved history and biography, while Carl was a poet and read archeology and art. She was the one who constantly read journal articles and kept people in the lab up-to-date on new findings in biology and related fields.

The Coris worked hard, but also tried to leave work at the lab. They entertained, kept a garden, and continued enjoying the outdoors. It was on a mountain climbing trip in 1947 that Gerty first fell ill and they discovered she had a disease that would eventually take her life. Her bone marrow was no longer producing red blood cells. She worked almost to the end. Her only concessions to the disease were taking time out for the blood transfusions that were necessary, and setting up a cot in her office where she would lie down to do her reading. Gerty Cori died at her home on October 26, 1957.

Resources
Nobel Prize Women in Science by Sharon Bertsch McGrayne
American Chemical Society National Historic Chemical Landmark

Read about other Famous Women in Math and Science

Laura Bassi – Italian Physicist (1711 – 1778)

Laura Bassi by Carlo Vandi
Laura Bassi by Carlo Vandi

 

The entrance of women into the sciences has been a long process beginning several centuries ago. It’s not easy to find these women in the 18th century, but those that made a name for themselves did so because they were far from ordinary. Admittance into this formerly all male club seems to have begun in Italy (at least for post-Renaissance Europe,) specifically the University of Bologna where Laura Bassi became the first woman professor of physics in Europe.

Born November 29, 1711, Laura Bassi was the only child in her family to survive to adulthood. As with many (maybe most) scientifically inclined women prior to the 20th century, she received an education because her father recognized her ability and brought tutors into their home. This was a privilege reserved for the well-to-do, if not exclusively for the aristocracy. Bassi’s father was a successful lawyer, but the family was not of the nobility.

From the age of five Laura was instructed in French, Latin, and mathematics by a cousin, and later by the family physician in philosophy, natural philosophy, metaphysics, and logic. Her abilities were known throughout the city attracting attention of people who would visit her home to meet her. Similar to the salons in France, the intellectual elite in Italy would gather in homes to discuss philosophy, literature, science, mathematics, etc. Laura seems to have been put on display in her home in much the same way Maria Agnesi was.

In 1732, in a public debate Laura presented and defended her ideas regarding Newton and the new physics. She was awarded her doctorate and offered a position teaching at the University of Bologna. This required another public examination where she was successful, becoming the first woman professor of physics in a European University. As with Maria Agnesi, there is disagreement among scholars as to the extent of her teaching responsibilities. Some think that she was limited to occasional lectures, others believe she had a full teaching load. It seems to be a matter of propriety. Lectures in public would attract both women and men, but teaching at the university would usually entail being alone in a classroom with all male students.

A coin was minted to commemorate Bassi’s acceptance as a professor at the University of Bologna.

This situation was relieved when in 1738 she married Giovanni Guiseppe Veratti, a fellow scientist and professor. As a married woman, the university made allowances for Bassi to lecture in her home. Bassi and her husband had eight to twelve children. There is disagreement on the number of children, but baptismal records seem to support eight, five of whom survived to adulthood. Laura and her husband shared a love of science, created a laboratory in their home, and performed experiments together. Teaching from her home gave her more flexibility to perform experiments and to choose which topics she taught.

During her examination for her professorship, she attracted the attention of Cardinal Prospero Lambertini (later Pope Benedict XIV) who was impressed and extended his support to Laura in her studies. In 1745, he appointed her to an elite group of scholars known as the Benedettini in which she was the only woman. Originally intended to be a group of 24, Lambertini met with resistance when he wanted to appoint Bassi to one of the positions. He then added a twenty-fifth position for her. After Bassi’s death this seat remained vacant until the 1800s. The purpose of the Benedettini was to encourage scientific advancement in Italy. Each member was responsible for writing and presenting a paper to the pope each year. Lambertini also arranged for Bassi to have access to scholarly documents in the Vatican which were usually restricted to male scientists over the age of 24

The scientific community was small in Europe at the time and Bassi communicated with leading scientists. She appears to have been instrumental in getting Voltaire admitted to the Academy of Sciences at Bologna and I’m sure through him she would have been familiar with Emilie du Chatelet’s works on mathematics and physics. At the beginning of her career, Newton’s ideas were still new and somewhat controversial and it’s easy to believe that she may have had a hand in introducing them to Italy. Bassi’s surviving papers however, are related to compression of air, hydraulics, a couple of dissertations on mathematics, and later electricity.

Bassi took on additional teaching positions later in her life. In 1766, she assumed a position teaching physics for the Collegio Montalto, a free seminary where students were taught in professor’s homes and earned degrees in theology or law. In 1776, Bassi’s husband was an assistant to Paola Battista Balbi the Chair and Institute Professor of Experimental Physics when Balbi died leaving a vacancy. Although her husband would have been the obvious choice, Bassi petitioned to be considered for the post. It seems that her skills in mathematics made her a more logical choice and she received the appointment. When Bassi died two years later, her husband took the post and was later succeeded by their son Paolo keeping it in the family until 1796.

I had never taken notice of Laura Bassi until recently. She doesn’t appear at all in several books I have on women in science and math and where she does appear it is cursory. I’m not sure why, because she had a life long career in science. It could be because she didn’t publish major works that were accessible to a lay person. Her works were scholarly and original. Unlike Agnesi, who went on to do work among the poor and destitute after the death of her father, even though she was concerned for the poor, it wasn’t Bassi’s primary focus. And of course, Emilie Du Chatelet was a scientist, but also the lover of a famous man, Voltaire, and we all seem to love to hear about a scandalous woman. Regardless of the reason, we should take note of Laura Bassi. She had tremendous staying power, a long career in a man’s field, and she raised a family. Sounds like something that many contemporary women are trying to do and would be inspired by.

Oh and she has a crater on Venus named for her – what more could you ask from a woman!

Resources
Women in Science: Antiquity through the Nineteenth Century by Marilyn Bailey Ogilivie
Women in Science by H. J. Mozans

Read about other Famous Women Mathematicians and Scientists.