Irène Joliot-Curie – For the Joy of Science

In 1925, Irène Curie walked into an auditorium of 1000 people to defend her dissertation. This was big news because she was the daughter of two time Nobel Prize winner Marie Curie. The pressure could have been enormous, but as usual Irène was calm, confident, and dressed unfashionably! From an early age, Irène had dealt with her parent’s fame both positive, such as when at the age of six she calmly told the reporter who came to the house that her Nobel Prize winning parents were at the laboratory, and negative when a classmate handed her a newspaper article about her mother’s affair with Paul Langevin. She had come to see fame as something external and of no real importance. She didn’t pursue her research for fame, but for the sheer joy of the science itself.

At first glance, Irène was a quiet, shy child, some might even say somber, but as time would show, she just had little energy or attention for things that in her mind didn’t matter or that bored her. Born in September of 1897, her parents Pierre and Marie Curie were in the midst of their most intense period of research. In spite of this, she was a wanted and welcome addition to the family. Limited time and resources, however, did mean that the young parents needed help, and this came in the form of Pierre’s father, Eugene Curie. Pierre’s mother died shortly after Irène was born, so Eugene moved into the house to take care of her.

Eugene was a more openly affectionate person than either Marie or Pierre, and gave Irène, and later her sister Eve, born in Paris in 1904, much of their emotional foundation. Irène later said that many of her values and beliefs about religion and politics came from her grandfather rather than her mother. When Pierre died in 1906, Marie was so distraught that she wouldn’t let his name be spoken around her. Eugene helped the girls by talking to them and teaching them about their father. After Eugene died in 1910, Marie, Irène, and Eve became much closer and remained close for their entire lives.

Irene Curie as a child with her mother and sister Copyright © Association Curie Joliot-Curie

In spite of a more reticent personality, Marie and Eugene agreed on many things. Because of his unique personality and abilities, Pierre’s parents had home-schooled him, and Marie felt that the same approach would be better for Irène. To supplement the public school, she organized a cooperative among other scientists and academics to provide classes in their homes for their children. The subjects ranged from mathematics and science, to literature and art. Emphasis was put on creativity, play, and self-expression. Other physical and practical activities weren’t neglected either. Marie made sure the girls learned to cook, knit, and sew, as well as to swim, bicycle, and ride horseback. Irène was especially athletic. She took long backpacking trips during the summer, frequently swam the Australian crawl in the Seine, and could dance until early in the morning. It didn’t phase her that backpacking and the Australian crawl were considered men’s sports.

From an early age it was clear that Irène was very much like her father. Among her friends she was calm and relaxed, but she was less comfortable with strangers, rarely smiling in public. Her thought process was much like his as well, not as quick as Eve, but a deep analytical thinker. It was also clear that Irène would be good at science. After the cooperative ended, Marie continued to teach Irène mathematics to give her the foundation she needed, even sending problems back and forth in the mail when Marie was away at conferences. After a couple more years in public school, Irène finally entered the Sorbonne to study science.

In 1914, World War I interrupted Irène’s studies. Marie had written to Irène saying that she hoped they could both be of service, so when her mother developed a mobile x-ray unit, she went into the field to help operate and maintain them. But to say that she helped her mother is to greatly understate the situation. The need was so great that they worked independently of each other. Irène went to the front to set up, repair, and operate the units. Often they were used during surgery to help locate shrapnel in the body. When she wasn’t at the front trying to convince experienced military surgeons that a teenaged girl knew more about x-rays and geometry than they did, she was training other technicians. In spite of spending her eighteenth birthday alone at the front, she seems to have handled this time with composure and a confidence that is rare, although her mother never doubted her. Irène later said, “My mother had no more doubts about me than she had about herself.”

Irene and her mother Marie Curie working at a hospital in Belgium in 1915 Copyright © Association Curie Joliot-Curie

Once the war was over, Irène returned to the Radium Institute, run by Marie, to continue her research and study. Here in 1924, just before receiving her doctorate, Irène met Frédéric Joliot. Two years her junior, Frédéric was outgoing and charming. According to their daughter Hélène, they were “opposites in everything.” He was from a big family, had a wide variety of interests, and was much more sociable than Irène, but they shared some very important things. They loved outdoor sports, had similar political views, and loved science. When they were married in October of 1926, they had lunch at Marie’s apartment and went back to work.

Irène and Frédéric worked together for the rest of their lives and collaborated on their most important work. As with other creative teams, their approaches were very different. He moved quickly from one idea to the next, taking creative leaps, while Irène was slower in her thought process, but moved steadily toward logical conclusions. Several times they made important discoveries, but didn’t interpret the information correctly. One of these experiments was similar to that done by Otto Hahn which was interpreted by Lise Meitner leading to Hahn’s Nobel Prize. Finally, in 1935, Irène and Frédéric Joliet-Curie received a Nobel Prize in Chemistry for the discovery of artificial radioactivity.

In the intervening years, Irène had given birth to a daughter, Hélène in 1927, and to a son Pierre in 1932. She loved being a mother and in many ways was traditional, but she maintained her career. Although Marie died in 1934, she had lived long enough to see the experimental results that she knew would ensure her daughter a Nobel Prize. So in 1935, their lives were marred by only one thing – the growing Fascist threat in Europe.

After 1935, Irène and Frédéric no longer collaborated directly in their work. Frédéric took a position at the Collège de France where he worked in nuclear physics, building a cyclotron and raising funds for scientific research. In this position he became very powerful and contributed greatly to France’s ability to produce nuclear energy. Irène became a professor at the University of Paris, but continued as the research director at the Radium Institute. She also got involved in politics and joined several women’s rights organizations.

Irene and Frederic Joliot in 1934 photo by GFHund for Wikipedia

When the Popular Front, an anti-Fascist coalition, was elected in 1936, Irène was offered and accepted the position of under-secretary of scientific research, making her one of the first women cabinet members in France. As the war progressed, Frédéric joined the resistance and eventually, the Communist party because it was the most active anti-Fascist group in the country. Irène’s activity, however, declined. For almost twenty years she had suffered from tuberculosis and was having to take more and more time away from work and in the Alps on the “rest” cure. Finally, Frédéric, as head of his resistance organization, was forced to go underground and arranged to have Irène and the children smuggled into Switzerland, on June 6, 1944.

After the war, Frédéric was considered a hero, and appointed head of France’s Atomic Energy Commission with Irène as a commissioner. Irène was able to obtain streptomycin to cure her tuberculosis and continue her work for women’s rights and as director of the Radium Institute. For a while things were good, but by 1950, the Cold War was gaining ground and anti-communist sentiments were growing. Both Irène and Frédéric found themselves out of favor and for the first time outside the scientific community. Frédéric was fired from the Commission, and unable to obtain other scientific work, began to work for peace organizations. Irène was at least able to continue her work at the Institute, but the years of work had taken another toll.

Like Pierre and Marie before them, Irène and Frédéric were both suffering from the effects of prolonged exposure to radiation. Their health declined steadily in the 1950s. Even though Marie continued to work and worry about Frédéric’s health, she was finally unable to ignore the effects. On a trip to the Alps, Irène became ill. Returning to Paris, she checked in to the hospital and on March 17, 1856, Irène died of leukemia. Frédéric was too ill to see her for more than a few minutes. He died two years later. By this time the worst of the red scare was past and they were both honored with national funerals. They had spent their lives doing what they loved.

“I discovered in this girl whom other people regarded somewhat as a block of ice, an extraordinary person, sensitive and poetic, who in many ways gave the impression of being a living replica of what her father had been. I had read much about Pierre Curie. I had heard teachers who had known him talking about him and I rediscovered in his daughter the same purity, his good sense, his humility.” ~ Frédéric Joliot-Curie about Irène

Resources
Nobel Prize Women in Science by Sharon Bertsch McGrayne
Obsessive Genius: The Inner World of Marie Curie by Barbara Goldsmith
Marie Curie – early life
Marie Curie – scientific discoveries and Nobel Prize

Read about other Famous Women Mathematicians and Scientists.

Madame Curie – Part 2

Marie and Pierre Curie were both people who preferred to stay out of the limelight. As their fame grew, Marie probably adjusted to the attention better than Pierre did, but doing the work of science was foremost for both of them. Pierre still had a low level position in one of the less prestigious schools in Paris even though he had friends who worked to try to get him a position at the Sorbonne. Marie had finished her work on magnetism and began to look around for a topic for her doctoral thesis. They took a small apartment, Pierre took on more tutoring work and Marie got her teaching certification. Their income was small, but they could make it.

During this time, there was a series of discoveries which would set the stage for the work which would bring Marie Curie her fame. Conrad Röntgen discovered X-rays. The exact nature of this radiating energy was unknown, but a connection was hypothesized between X-rays and phosphorescence. Henri Becquerel, with an interest in phosphorescence, experimented to determine whether or not other minerals known to be florescent produced X-rays. After testing many different minerals, the only one which exhibited a similar type of radiating energy was uranium.

The discovery of X-rays created quite a stir, particularly with its implications for medicine, so of course the Curie’s followed the related research. Marie thought that uranium and this radiating energy were of interest and decided to investigate further. By examining ore samples containing uranium, she determined that the amount of radiation was directly related to the amount of uranium in the sample. It wasn’t affected by other factors such as temperature or other elements contained in the sample. This led her to hypothesize that the radiation was a characteristic of the atom itself.

One of the minerals that she investigated was pitchblende. Here she measured much higher levels of radiation than could be accounted for by uranium. She concluded that there must be additional elements within pitchblende that also exhibited this property of radiating energy and began the long and tedious process of isolating and identifying them. She coined the term radioactivity and established the science that would be used to analyze it.

It is important to remember that other scientists were actively involved in similar investigations. Becquerel had in fact discovered, and maybe more importantly, published the concept of radioactivity first. In Marie’s experiments she discovered that the element thorium was radioactive, but Gerhard Schmidt in Germany had discovered the same thing and published it earlier. Marie knew of the importance of announcing and publishing her work in a timely fashion. Since, neither she nor Pierre were members of the French Academy of Science, her former professor Gabriel Lippman presented her first paper on the subject for her in 1898.

It took about four years for Marie to complete her work. She isolated two radioactive elements in pitchblende: polonium and radium. At some point, Pierre put his work aside and began to work with her, as did other scientists and students. Much of the work, especially at the beginning, required back breaking effort. As it turns out, they had to process from 6- 7 tons of pitchblende to get a miniscule amount of radium. Radium is the element that caught the imagination of the world and would be used in things from paint on watch dials to “health” drinks, much to the detriment of those that came in close contact with it.

During this period of time, Marie gave birth to their first daughter, Irene, in 1897. It was, of course, expected that a woman would take care of everything related to the home. When Marie and Pierre were married, their home and lives were simple. It is said that they only had two chairs at their table to discourage visitors from staying. In the evening, they would companionably read physics together. They had a shared obsession with science that overshadowed everything else. When Irene was born this changed dramatically.

Marie went back to her work, but would have to rush home to nurse Irene. She didn’t have enough milk and had to hire a wet nurse. With two nurses to care for the baby, their meager income was stretched even more. With the hard physical work she was doing, the increased expenses, and the feeling of failure at not being able to nurse her baby, the stress took its toll on Marie’s health. Pierre’s father came to the rescue. Dr. Eugene Curie was the physician who had delivered Irene. During the same month, his wife, Pierre’s mother died of breast cancer. So, at the beginning of 1898, Dr. Curie moved in with Marie and Pierre to care for Irene.

Dr. Curie was a godsend. He was a warm, expressive man who Irene and later Eve would remember fondly. He is probably responsible for meeting most of their emotional needs. There is no doubt that Marie loved her children, but she and Pierre were in many ways lost in their scientific world. And after Pierre died in 1906, Marie would close herself off emotionally, preventing them from even mentioning Pierre’s name in her presence.

Pierre had been denied the acclaim in France that he had received internationally, in part due to his unconventional background, and Marie faced these kinds of prejudices as well because she was a woman. By 1902, she had isolated enough radium to determine its place on the periodic table and to satisfy the chemists that it was indeed a new element. She wrote her thesis and received her doctorate and in 1903, Marie, Pierre, and Henri Becquerel were nominated for and received the Nobel Prize in physics.

It wasn’t quite that simple though. The Nobel Prizes were first given beginning in 1901. That first year, and again in 1902, Charles Bouchard nominated all three of them. Other people were chosen both years. Then in 1903 four influential scientists, including Gabriel Lippman, Marie’s former professor whom she considered a friend, nominated Henri Becquerel and Pierre Curie for the physics prize with no mention of Marie. Magnus Gustaf Mittag-Leffler a respected Swedish mathematician who was on the nominating committee told Pierre of the nomination. Pierre wrote him that he would not accept the prize unless Marie was included. He approached the committee with this letter, and with the support of Charles Bouchard, the nomination was changed to include Marie.

(Mittag Leffler believed that women were under appreciated in the sciences. He was also the person responsible for raising the private funds to support the appointment of Sonya Kovalevsky to a position of full professor in mathematics at his university in Sweden. She was the first woman to become a professor of mathematics and Marie Curie the first woman to become a Nobel Prize winner. Thank you Professor Leffler!)

Life changed after the Nobel Prize. Although, the Curie’s had not patented their process for extracting radium, they did receive some income from it due to its immense popularity, but probably not enough to make up for the time they had to spend dealing with other people. They had made this choice on principle believing that it was more important to facilitate the work of science than to profit from it.

In 1904 Pierre was finally offered a chair at the Sorbonne, the same year a second daughter, Eve, was born. And in 1905, he was offered membership in the French Academy of Science. The latter came with lab facilities and three posts, one of which he gave to Marie. Then tragedy struck in 1906, when Pierre fell in the street and was struck in the head and died.

Pierre’s death changed Marie. Joy and light seemed to be taken from her. Dr. Curie sustained his granddaughters and taught them about their father, because Marie refused to discuss him after his death. This would be especially important for Eve since she was less than two years old when he died. Marie would be actively involved in their lives, planning their education and being with them, but it was never the same.

Life is complicated and it is difficult if not impossible to determine cause and effect in many areas of our lives. But Pierre Curie understood his wife in a way that I’m not sure anyone else did. Her drive to study science was probably motivated by several things, interest and ability of course, but possibly a need to do the things that had been denied her father, as well as a need to retreat from every day life when depression threatened to overwhelm her.

Curie in a World War I mobile x-ray vehicle

It’s also impossible to give an accurate picture of a complicated person in 3000 words or less. Marie went on to become a professor at the Sorbonne in 1908 and win the 1911 Nobel Prize in Chemistry for her discovery of radium, an award that was almost derailed because of an affair with Paul Langevin. (This, in itself, is a study of how women were treated differently even in the “rational” world of science. The same standard certainly wasn’t applied to Langevin or to Einstein for that matter.) She oversaw the building of The Curie Institute, developed and implemented mobile X-ray machines during World War I, and even got involved in a little intrigue to prevent the Germans from getting their hands on radium during the war.

Marie continued to teach young scientists, although she would do no more original work of the caliber she did in her early life. Some (at least at the time) would try to claim this as evidence that Pierre was the real scientist of the two, but I don’t think this is the case. Many scientists do their best work at an early age. I think they were both exceptional scientists with individual accomplishments and an understanding of each other that brought out the best of each.

Note: The next woman to win a Nobel Prize would be Marie and Pierre’s daughter, Irene Joliot-Curie with her husband Frederic Joliot-Curie in 1935, the year after Marie’s death.

Read about Marie’s early life.

Resources
Obsessive Genius: The Inner World of Marie Curie by Barbara Goldsmith
Six Great Scientists by J. G. Crowther